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We propose a way to manipulate the transport properties of massless Dirac fermions by using velocity
barriers, defining the region in which the Fermi velocity, vF, has a value that differs from the one in the
surrounding background. The idea is based on the fact that when waves travel accross different media, there are
boundary conditions that must be satisfied, giving rise to Snell’s-type laws. We find that the transmission
through a velocity barrier is highly anisotropic, and that perfect transmission always occurs at normal inci-
dence. When vF in the barrier is larger than the velocity outside the barrier, we find that a critical transmission
angle exists, a Brewster-type angle for massless Dirac electrons.
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When reading this Brief Report, one is using the fact that
the speed of light in vacuum is different from the speed of
light in various parts of your eyes.1 That difference allows
our eyes and other optical devices to focus light in a very
simple but efficient way. In general, when a physical object
crosses a boundary, it must follow certain rules, regardless of
its particle or wavelike behavior. Those rules are typically
various incarnations of the well-known Snell’s law for op-
tics.

In optics, the Snell’s law is the natural outcome of Fer-
mat’s principle: light follows the path of least time.1,2 Similar
laws are found in all known oscillatory phenomena.3 This
relation can also be found in classical mechanics in the stan-
dard problem of scattering by a constant potential barrier.4 In
this case, this law appears as the consequence of conserva-
tion of linear momentum in the direction parallel to the bar-
rier and overall energy conservation. It also appears in quan-
tum systems, and the prediction of relations analogous to
Snell’s law would be of utmost importance because, as hap-
pens in optics, it will allow us to control the focusing of
electrons, opening paths for new nanodevices.5

With the successful preparation of graphene—a single
layer of graphite6,7—a new route to test long-standing pre-
dictions made in quantum electrodynamics became possible.8

This new material has also opened new ways to fabricate
nanodevices that take advantage of the multiple exotic char-
acteristics and novel phenomena shown by graphene, such as
unimpeded penetration of quasiparticles through p-n
junctions,9–11 the possible control of pseudospin number
�valleytronics�,12 or metrology applications such as the mea-
surement of the fine-structure constant.13

Quite recently, it has been argued that electron supercol-
limation could be achieved in graphene by using a potential
superlattice.14 This approach requires a careful control of the
potential barriers. Given that the system will essentially be
one dimensional, it would be difficult to avoid the effects of
disorder, although it is well known that massless Dirac fer-
mions are not quite as susceptible to potential barriers as
their Schröedinger cousins.

In this Brief Report, we describe an interesting, velocity
barrier approach to collimation and manipulation of beams
of massless Dirac particles. This approach is based on the
fact that the above superlattice will produce an anisotropic
velocity renormalization, making the effective velocity on

the vertical coordinate �vy� smaller than the original Fermi
velocity �vF� for excitations in clean graphene. Thus, due to
momentum conservation, it can be argued that only electrons
that are close to normal incidence will survive the scattering
with the superlattice. All electrons with momentum far from
normal incidence will be deflected. In this argument, the role
of momentum conservation in the direction perpendicular to
the barrier is fundamental, as is the case for photons. Mo-
mentum in the direction parallel to the barrier is not con-
served. Thus, if we force it to change, the outcome obtained
by the above argument will remain. This is precisely the case
when a velocity barrier is used.

On the experimental front, a velocity barrier can be imple-
mented in several ways. For example, one could stretch a
small region of a graphene sheet,15 use superlattices16,17 or
vary the interactions with the medium around the graphene
layer.18,19 Here, we solve a generic problem in which the
Fermi velocity has been modified to form what we call a
velocity barrier. We must emphasize that our results are com-
pletely independent of the method used to modify the Fermi
velocity, provided there is no gap opening in the system.

The proposed setup is shown in Fig. 1, in which Dirac
fermions move with a group velocity given by

vef f�x� = �vF
0 region I, x � 0

vF region II, 0 � x � W

vF
0 region III, x � W .

�
We will set vF

0 to unity, thus the only relevant quantity will
be vF, the Fermi velocity inside the barrier, expressed in
units of the Fermi velocity far from the barrier. W is the
barrier width.

In the absence of external potentials, quasiparticle excita-
tions in graphene obey the Dirac equation20

vef f�� · p�� = E� , �1�

where �� = ��x ,�y� is in standard Pauli matrix notation. For
convenience, we define �=1. This equation has a generic
chiral solution around the Dirac point K� , which can be writ-
ten �after a gauge transformation� in momentum space as

PHYSICAL REVIEW B 82, 033413 �2010�

1098-0121/2010/82�3�/033413�4� ©2010 The American Physical Society033413-1

http://dx.doi.org/10.1103/PhysRevB.82.033413


��k�� =
1
�2

� 1

sei�k
� ,

where �k=arctan�kx /ky� is the angle defined in momentum
space. s=� indicates the chirality of the solution which, for
the case of graphenelike structures, is associated with the
current �J� =evF�†�� �� and not with the handedness of the
system. Note that in the problem discussed in this Brief Re-
port, chirality will not play an important role and we are free
to set s=1. We have assumed that the barrier is smooth com-
pared with the lattice spacing of the underlying physical sys-
tem, such that no KK� valley mixing will occur.

We can write the general solution for this scattering prob-
lem in terms of the incident and reflected waves. In region I
we have that

�I�r�� = �� 1

ei	 �eikxx + r� 1

ei�
−	� �e−ikxx	 eikyy

�2
,

where 	=arctan�ky /kx�, kx=kF cos�	�, and ky =kF sin�	�. In
region II the solution can be constructed in a similar fashion
as

�II�r�� = �a� 1

ei� �eiqxx + b� 1

ei�
−�� �e−iqxx	 eikyy

�2
,

where �=arctan�ky /qx� and qx= 
�E /vF�2−ky
2�1/2.

For the transmitted wave we have

�III�r�� =
t

�2
� 1

ei	 �ei�kxx+kyy�.

Thus, in principle, we have to solve the scattering problem
using the transmission matrix approach. In this problem, the

correct boundary conditions to be imposed at x=0 and x
=W are

�I�0−� = �vF�II�0+� , �2�

�II�W−� =
1

�vF

�III�W+� . �3�

These boundary conditions are a consequence of the conser-
vation of local current at the interfaces. Solving for the co-
efficients a, b, r, and t, we find for the reflection coefficient

r =
ei	 sin�Q�
sin�	� − sin����

cos�Q�cos���cos�	� + i sin�Q�
sin���sin�	� − 1�
,

�4�

where Q=Wqx. Figures 2 and 3 show the angular depen-
dence of the transmission probability T=1− �r�2. It is impor-
tant to note that T�	�=T�−	�. Taking advantage of that sym-
metry, we plot our results in the interval 	� 
0° ,90°�.
Furthermore, for the case of massless particles at normal
incidence we find that T�0�=1, indicating perfect transmis-
sion at normal incidence regardless of the value of vF. The
existence of peaks that reach perfect transmission at specific
angles is characteristic of resonant behavior in this system.
This can be readily checked by analyzing the zeros of r that
correspond to sin�Wqx�=0, producing resonances at Wqx
=n
 for integer values of n �in other words, when the barrier
becomes transparent�. A second peculiarity appears when
vF�1. As shown by the black and cyan lines in Fig. 2 and in
pink in Fig. 3, transmission is prohibited for any angle larger
than 	c. In Figs. 3 and 4, where we show the transmission at
a fixed energy for different velocities and width �W�, the
existence of a critical angle is apparent when vF�1. It is
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FIG. 1. �Color online� �a� Schematic of the low-energy spectrum
of Dirac quasiparticles when a velocity barrier is present. The three
diagrams in �a� show how the Fermi velocity vF �the slope of the
Dirac cone� changes as a function of x. The green and the blue
Dirac cones correspond to vF�vF

0 and vF�vF
0 , respectively. �b�

Setup needed to test the predicted effects. We set the Fermi velocity
vF

0 of the system for x�0 and x�W to one. vF is the Fermi velocity
for 0�x�W, rendering the system nonhomogeneous. The wave
vectors used to find the transmission matrix solution of this problem
are shown in black.
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FIG. 2. �Color online� Transmission probability for different
values of the control parameters EF and vF. Green and blue lines
correspond to the case in which the effective Fermi velocity inside
the barrier 0�x�W is 1/2. Blue corresponds to EF equal to 20
meV and green to 100 meV. Black and cyan lines correspond to the
cases in which the effective Fermi velocity inside the barrier 0
�x�W is 10. Black corresponds to EF equal to 20 meV and cyan
to 100 meV. The barrier width is W=350 nm for all curves. Notice
that, for large vF, there is a critical angle �Brewster angle� for which
no transmission is possible.
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also clear from Fig. 2 that the only effect of increasing the
energy is to increase the number of resonant peaks in T�	�.
In fact, as the energy of the incident Dirac fermions is in-
creased, more ballistic channels will be opened. The critical
angle 	c is analogous to the called Brewster angle in optics.1

From the definition of the refracted angle

� = � arctan
sin 	 sgn
EF��vF
−2 − sin2 	�−1/2� �5�

we can see that the critical angle will be given by sin2 	c
=vF

−2, which has solutions only if vF�1, independent of EF.
We can make a link to the standard Klein’s paradox by

pointing out that Eq. �4� has the same functional form of the
reflection of Dirac fermions against a potential barrier with a
rectangular shape.9 The only difference is that the change in
the Fermi velocity is encoded in the definition of qx. This
simple observation allows us to compare the effect of a ve-
locity barrier in terms of a square potential. The dynamical
variable ky is invariant due to the translational symmetry in
the vertical direction. Therefore, it is enough to fix the sec-
ond dynamical variable qx equal in both cases, and then solve
for the potential in order to produce the same transmission

coefficients in both problems. It is straightforward to show
that such a potential will be

V�E� = E �
�E�
vF

. �6�

By using this analogy, we have obtained an energy-
dependent potential, which renders different phenomenology
of our velocity barrier. Such energy-dependent potentials
have been used in nuclear physics21 and in a different context
in attempts to generalize the uncertainty principle for high-
energy physics.22 We have also computed the effects of a
velocity barrier on two directly measurable quantities for this
system: conductivity and Fano factor.23,24 In the ballistic ap-
proximation both quantities are computed using the follow-
ing formulas

� = � L

H
� 

n=−�

�

Tn, F = 
n=−�

�

Tn�1 − Tn�/ 
n=−�

�

Tn. �7�

The transmission of each channel Tn depends on a phase
factor, �, which has different values for different boundary
conditions. In Fig. 5, we have used �=1 /2, corresponding to
an infinite mass lateral confinement.25,26 We have also
checked that, in the wide ribbon limit, our results stay the
same for other boundary conditions.

Our computation shows that � and F are indeed sensitive
to the presence of a velocity barrier. As expected from Eq.
�6�, the zero-energy values of conductance and Fano factor
remain the same. However, their values will drastically
change for a small bias voltage. In Fig. 5 the red line indi-
cates the values for � and F for vF=1 /5, showing that con-
ductance increases by a factor 3 at �1.5 as well as large
amplitude oscillations close to the Dirac point. For the case
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FIG. 3. �Color online� Transmission probability at EF

=100 meV, W=350 nm and velocities inside the barrier vF=1,
1/5, and 5 �green, blue, and pink lines, respectively�. Resonances
are apparent at Wqx=n
 with n=0,1 ,2 , . . . Note that for vF�1 no
transmission is allowed if 	�	cr.
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FIG. 4. �Color online� Transmission probability as a function of
the width W for fixed energy EF=100 meV and angle 	=
 /4.
Curves in green, red, and black correspond to velocities vF=1, 1/5,
and 5, respectively, inside the barrier.
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FIG. 5. �Color online� Conductivity � in units of 2e2 /h and
Fano factor F as a function of the energy of the incoming Dirac
fermions: green, red, and black correspond to vF, 5, 0.2, and 1.0,
respectively.  is eVH /hvF, where V is the gate voltage.
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in which vF=5 �green� few momenta can penetrate the bar-
rier due to the existence of a Brewster angle in this case. In
turn, the conductance is greatly reduced for energies away
from the Dirac point. In this case, the Fano factor increases
and reaches values that indicate departure from the classical
diffusive limit F=1 /3. In particular, the broad oscillation in
F in this case should be experimentally measurable.23,24

In this Brief Report we have proposed a distinct route to
control the electric transport of massless Dirac fermions
based on experimental control16,17 of velocity barriers. Our
main results demonstrate that it is possible, in principle, to
manipulate the transmission properties of a system described
by a Dirac equation by controlling the Fermi velocity. The
similarity of the Fermi velocity to the role of the refractive

index in optics naturally results in an effective Brewster
angle, which bodes well for ultimate construction of
waveguides and related devices. We have also shown that the
Fano factor and the conductivity of this system can be modi-
fied by a velocity barrier, producing strong oscillations as we
move away from the Dirac point. It would be interesting to
produce exact simulations in order to study the precise en-
ergy window in which these effects should be observable as
we wait for the experimental implementation of a velocity
barrier.

This work was supported in part by the NSF under Grant
No. DMR-0531159.
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